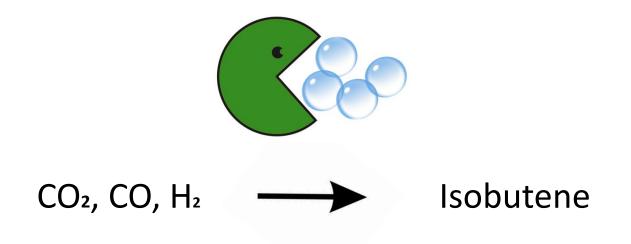




Problem


Industrial waste gas emissions (CO₂, CO) e.g. one steel mill emits > 6,000,000 tons/year

Solution

We can convert toxic and climate destroying waste gases via engineered bacteria into high value isobutene.

Market

Isobutene market size

- 15,000,000 tons annual production
- market value > 30,000,000,000 EUR

Isobutene can be used as a

- fuel (ETBE, MTBE, Isooctane) or a
- chemical (butyl rubber, methacrolein)
- Selling price range: **1500 3000** EUR/ton
- Estimated production price: < 400 EUR/ton

Unfair advantage

We combined two things into one superior product:

- Artificial, efficient pathways to value alkenes (WO2016034691)
- Fast growing and robust bacterial chassis (fastest gas-eating bacterium known)

((19) World Intellectual Property Organization International Bureau 43) International Publication Date		(10) International Publication Number WO 2016/034691 A1	
	10 March 2016 (10.03.2016) WIPO	PUT		
(51)	International Patent Classification: C12N 1/20 (2006.01) C12P 5/00 (2006.01)		AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BV, B' BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DJ DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, G HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, K KZ, LA, LC, LK, LK, LS, LU, LY, MA, MD, ME, M	
(21)	International Application Number: PCT/EP2015/07019	4		
(22)	International Filing Date: 3 September 2015 (03.09.2015)		MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SG SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TP	
	Filing Language: Englis		TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.	
(26)	Publication Language: Englis	h (84)	b) Designated States (unless otherwise indicated, for eve kind of regional protection available): ARIPO (BW, G (5M, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, S TZ, UG, ZM, ZW), Furnsian (AM, AZ, BY, KG, KZ, R TJ, TM, European (AL, AT, BE, BG, CH, CY, CZ, D DK, EE, FS, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, L V, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SL S	
(30)	Priority Data: 62/045/083 3 September 2014 (03.09.2014) U 62/047/827 9 September 2014 (09.09.2014) U 14186574.1 26 September 2014 (26.09.2014) E 14186690.5 26 September 2014 (26.09.2014) E	S P		
(71)	Applicant: SYNGIP BV [NL/NL]; Akenerstraat 25A, NL 6291BA Vaals (NL).	-	SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, G GW, KM, ML, MR, NE, SN, TD, TG).	
(72) (71)			lished:	
			with international search report (Art. 21(3))	
	Agent: MICHALSKI HÜTTERMANN & PARTNEI PATENTANWÄLTE MBB; Speditionstr. 21, 4022 Düsseldorf (DE).		before the expiration of the time limit for amending the claims and to be republished in the event of receipt a mendments (Rule $48.2(h)$)	
(81)	Designated States (unless otherwise indicated, for ever kind of national protection available); AE, AG, AL, AN		with sequence listing part of description (Rule 5.2(a))	
	nine of neuronal protection available). The, The, The,		2, and/or	
			and electrons	
		-	Wood-Ljungdahl pathway	
	¢ cis-geranyl-CoA ← ← L-leucine ← → ← acetyl-		+ I-CoA —+ acetoacetyI-CoA	
			31 80	
	t I		<u>+</u> 00	
	ļ		HMG-CoA	
	t t		82	
	↓ → 3-methylcrotonyl-CoA → 3-methylglutaconyl-CoA		↓ /I-CoA ← 3-methylglutaconyl-CoA	
	94	1	84	
	3-methylcrotonylphosphate -	36		
	96 3-met	hylcrotor	nate	
		38	Fig. 1E	
	ie	↓ obutene		
	10	55010110		

(5) Abstract: Disclosed is a recombinant microorganism comprising endogenous enzymes that covert CO and/or CO₂ to acetyl-CoA. The recombinant microorganism contains a heterologous nucleic acid sequence encoding one or more enzymes that allow the conversion of acetyl-CoA to an alkene with a main chain of 1 to 5 carbon atoms. The heterologous angleic acid sequence comrises one or more coding sequences encoding one or more enzymes that allow and that finther catalyse the conversion of acetyl-CoA to an alkene; or one or more coding sequences encoding one or more enzymes that catalyse the conversion of 3-methylerotoutyl-CoA to an alkene; or one or more coding sequences encoding one or more enzymes that catalyse the conversion of 3-methylerotoutyl-CoA to an alkene; or one or more coding sequences encoding one or more enzymes that catalyse the conversion of acetyl-CoA to tonyl-CoA, and that further catalyse the conversion of propionyl-CoA to an alkene. Each coding sequence is operationally linked to a transcriptional promoter.

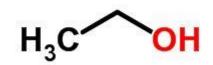
Isobutene competition

Status quo: petrochemical production of Isobutene. But low cost feedstock (waste gas) makes Syngip's approach economical + carbon tax beginning with 2020

<u>Competition:</u> Global Bioenergies ferments isobutene from sugars

- **Expensive** sugar feedstock not price competitive

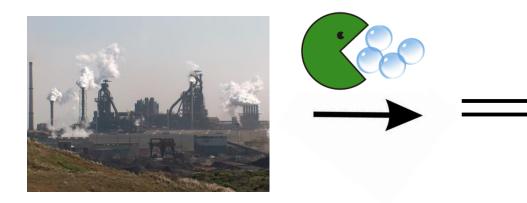
Global Bioenergies


 \rightarrow We are the <u>only</u> ones who can make isobutene from waste gases!

Syngas competition

Lanzatech

- products: ethanol from waste gases
- ethanol is toxic for bacteria
- energy intensive distillation required
- <u>slow</u> growing bacteria (doubling time 4 hours)
- wrong process temperature 30-37 °C
- vitamins needed to be added (expensive)
- high contamination <u>risk</u>
- <u>expensive</u> reactor design (high CAPEX)
- <u>sensitive</u> to impurities (gas cleaning necessary)
- <u>low</u> gas uptake rate



Syngip's tech at a glance

- Isobutene <u>not toxic</u> (high productivity)
- no energy intensive distillation required
- <u>fast</u> growing bacterium (fastest gas-eating bacterium known, doubling time **48 min**)
- <u>ideal</u> process temperature **40-70** °C
- <u>no vitamins</u> needed
- <u>no contamination</u> risk
- <u>no expensive</u> reactor design needed (lower CAPEX)
- <u>not sensitive</u> to impurities (no gas clean-up necessary)
- <u>high</u> gas uptake rate

Roadmap/Partnerships

Road to commercial production

- Step 1: Pilot scale autumn 2016 (ArcelorMittal, Bio Base Europe Pilot Plant, Dow Chemical, Procone GmbH)
- Step 2: Demo scale 1500 L (expected for 2017-2018)
- Step 3: Commercial scale (expected for 2019-2020)

Summary

The way of the future: next level <u>carbon</u> <u>capture</u> and <u>use</u> (CCU)

